Sigmoid function is a mathematical function that maps any real number to a value between 0 and 1. It is commonly used in machine learning models to introduce nonlinearity into the mathematical equations while ensuring that the output is always bounded between 0 and 1.
The sigmoid function is defined by the formula: f(x) = 1 / (1 + e^-x)
In this equation, e is a mathematical constant (approx. 2.718), and x is the input value to the function. As x increases, the output of the function approaches 1, and as x decreases, the output approaches 0. The midpoint of the function, where the output is 0.5, occurs at x = 0.
Sigmoid functions have a number of useful properties, including being monotonic, differentiable, and relatively simple to compute. They are often used in logistic regression models, neural networks, and other machine learning algorithms as activation functions or as a way of normalizing output values.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page